Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement finding out to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial identifying feature is its support learning (RL) action, which was used to improve the design's reactions beyond the standard pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adapt more effectively to user feedback and objectives, ultimately boosting both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, implying it's equipped to break down intricate questions and factor through them in a detailed manner. This assisted reasoning process allows the model to produce more precise, transparent, and detailed answers. This design fine-tuning with CoT abilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation model that can be integrated into numerous workflows such as representatives, rational thinking and information analysis tasks.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, making it possible for effective reasoning by routing questions to the most relevant professional "clusters." This technique allows the model to focus on various issue domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to simulate the habits and thinking patterns of the larger DeepSeek-R1 model, utilizing it as a teacher design.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid damaging material, and surgiteams.com evaluate models against key safety requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit boost, develop a limit increase demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Set up consents to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, avoid harmful material, and assess designs against crucial safety criteria. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to examine user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic circulation includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas show inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 design.
The design detail page provides essential details about the model's capabilities, prices structure, and application standards. You can find detailed usage directions, including sample API calls and code snippets for combination. The design supports various text generation jobs, including content development, code generation, and question answering, utilizing its reinforcement finding out optimization and CoT thinking abilities.
The page also includes release alternatives and licensing details to help you get started with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, select Deploy.
You will be triggered to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, go into a number of circumstances (in between 1-100).
6. For example type, pick your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function consents, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, you might want to examine these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the model.
When the release is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive user interface where you can try out different triggers and adjust model criteria like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For instance, content for reasoning.
This is an exceptional way to check out the design's reasoning and text generation capabilities before incorporating it into your applications. The play ground provides immediate feedback, assisting you comprehend how the design reacts to different inputs and letting you fine-tune your triggers for ideal outcomes.
You can quickly test the design in the play area through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out inference using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends a request to create text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses two hassle-free approaches: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both approaches to help you choose the technique that best suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model internet browser displays available designs, with details like the supplier name and design abilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals essential details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if applicable), suggesting that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the design
5. Choose the design card to see the model details page.
The design details page consists of the following details:
- The model name and service provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage guidelines
Before you deploy the design, it's suggested to evaluate the model details and license terms to verify compatibility with your usage case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, use the immediately produced name or develop a customized one.
- For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting suitable circumstances types and counts is vital for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this model, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to release the design.
The deployment process can take a number of minutes to finish.
When deployment is complete, your endpoint status will alter to InService. At this point, the model is prepared to accept reasoning demands through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the deployment is complete, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as revealed in the following code:
Clean up
To avoid unwanted charges, finish the actions in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases. - In the Managed deployments section, locate the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the correct deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build ingenious solutions utilizing AWS services and sped up calculate. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the inference efficiency of large language models. In his downtime, Vivek enjoys hiking, viewing motion pictures, and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building options that help clients accelerate their AI journey and unlock service value.